Экзамен БЖД

Билет № 1 Определения: БЖД ЧС РИСК НС ЗДОРОВЬЕ И ТД

Безопасность жизнедеятельности (БЖД) — наука о комфортном и травмобезопасном взаимодействии человека со средой обитания. Является составной частью системы государственных, социальных и оборонных мероприятий, проводимых в целях защиты населения и хозяйства страны от последствий аварий, катастроф, стихийных бедствий, средств поражения противника. Целью БЖД также является снижение риска возникновения чрезвычайной ситуации по вине человеческого фактора.

Опасность - возможность возникновения обстоятельств, при которых материя, поле, энергия, информация или их сочетание могут таким образом повлиять на сложную систему, что приведет к ухудшению или невозможности ее функционирования и развития.

Риск — сочетание вероятности и последствий наступления неблагоприятных событий.Также риском часто называют непосредственно предполагаемое событие, способное принести кому-либо ущерб или убыток.

Здоровье — состояние любого живого организма, при котором он в целом и все его органы способны полностью выполнять свои функции; отсутствие недуга, болезни.

Несчастный случай — непредвиденное событие, неожиданное стечение обстоятельств, повлёкшее телесное повреждение или смерть.

Авария — разрушение сооружений или технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрыв или выброс опасных веществ.

Катастрофа — происшествие, возникшее в результате природной или техногенной чрезвычайной ситуации, повлёкшее за собой гибель людей или какие-либо непоправимые последствия в истории того или иного объекта.

Чрезвычайная ситуация — обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей.

Билет № 2 Классификация трудовой деятельности Тяж труда

Физический труд - характеризуется нагрузкой на опорно-двигательный аппарат и функциональные системы организма человека обеспечивающие его деятельность.

Умственный труд объединяет работы, связанные с приемом и переработкой информации, требующей преимущественного напряжения внимания, памяти, а также активизации процессов мышления.

Физический труд. Этот вид трудовой деятельности имеет место при отсутствии механизированных средств для выполнения работ и поэтому характеризуется повышенными энергетическими затратами.

Механизированные и автоматизированные формы труда. Человек (оператор) частично выполняет умственные и физические функции. В зависимости от функции, выполняемой человеком.

Тяжесть труда характеризуется физической динамической нагрузкой, массой поднимаемого и перемещаемого груза, перемещениями в пространстве, рабочей позой.

По показателям тяжести трудового процесса различают следующие классы условий труда:

Оптимальный(легкая физическая нагрузка)

Допустимый(средняя физическая нагрузка)

Вредный(тяжелый труд 1-й и 2-й степеней).

Билет № 3 Напряженность труда и классификация ТД

Физический труд - характеризуется нагрузкой на опорно-двигательный аппарат и функциональные системы организма человека обеспечивающие его деятельность.

Умственный труд объединяет работы, связанные с приемом и переработкой информации, требующей преимущественного напряжения внимания, памяти, а также активизации процессов мышления.

Физический труд. Этот вид трудовой деятельности имеет место при отсутствии механизированных средств для выполнения работ и поэтому характеризуется повышенными энергетическими затратами.

Механизированные и автоматизированные формы труда. Человек (оператор) частично выполняет умственные и физические функции. В зависимости от функции, выполняемой человеком.

Напряженность труда — характеристика трудового процесса, отражающая нагрузку преимущественно на центральную нервную систему, органы чувств, эмоциональную сферу труда. К факторам, характеризующим напряженность труда, относятся: интеллектуальные, сенсорные, эмоциональные нагрузки, монотонность нагрузок, режим работы.

По показателям напряженности трудового процесса различают следующие классы условий труда:

Оптимальный(напряженность труда легкой степени, требующая затрат энергии до 174,1 Дж/с).

Допустимый(напряженность труда средней степени — от 174,1 до 290,5 Дж/с).

Вредный(напряженность труда 1-й и 2-й степеней — более 290,5 Дж/с).

Билет № 4 Микроклимат Нормирование Параметры его

Микроклимат — комплекс физических факторов внутренней среды помещений, оказывающий влияние на тепловой обмен организма и здоровье человека.

Параметры;

-      температура, t, °С;

-      относительная влажность, j, %;

-      скорость движения воздуха на раб. месте, V, м/с;

-      интенсивность теплового излучения W, Вт/м2;

-      барометрическое давление, р, мм рт. ст. (не нормируется)

В соответствии с ГОСТ 12.1.005-88 нормируемые параметры микроклимата подразделяются на оптимальные и допустимые.

Нормирование;

Оптимальные параметры микроклимата — такое сочетание температуры, относит. влажности и скорости воздуха, которое при длительном и систематическом воздействии не вызывает отклонений в состоянии человека.

t = 22 — 24, °С

j = 40 — 60, %

V £ 0,2 м/с

Допустимые параметры микроклимата — такое сочетание параметров микроклимата, которое при длительном воздействии вызывает приходящее и быстро нормализующееся изменение в состоянии работающего.

t = 22 — 27, °С, j £ 75, %, V = 0,2-0,5 м/с

Рабочая зона — пространство над уровнем горизонтальной поверхности, где выполняется работа, высотой 2 метра.

Рабочее место — (м.б. постоянным или непостоянным), где выполняется технологическая операция.

Для определения нормы микроклимата на рабочем месте, необходимо знать 2 фактора:

1.     Период года (теплый, холодный). + 10 °С граница

2.     Категория выполняемой работы, которая подразделяется в зависимости от энергозатрат:

-      легкую (Iа — до 148 Вт, Iб — 150-174 Вт);

-      средней тяжести (IIа — 174-232 Вт, IIб — 232-292 Вт);

-      тяжелая (III — свыше 292 Вт).

Билет № 5 Терморегуляция Уравнение ТБ Высокая температ.

Терморегуляция — это способность животных организмов поддерживать температуру тела в определённых границах, даже если температура внешней среды сильно отличается.

Общее воздействие микроклимата на тепловое состояние может быть выражено уравнением теплового баланса: Qмет ± Qконд ±Qрад ± Qконв  Qисп = 0

Высокие температуры оказывают отрицательное воздействие на здоровье человека. Работа в условиях высокой температуры сопровождается интенсивным потоотделением, что приводит к обезвоживанию организма, потере минеральных солей и водорастворимых витаминов, вызывает серьезные и стойкие изменения в деятельности сердечно-сосудистой системы, увеличивает частоту дыхания, а также оказывает влияние на функционирование других органов и систем — ослабляется внимание, ухудшается координация движений, замедляются реакции и т.д.

Тепловой удар. Возникает вследствие острой недостаточности терморегуляции, чаще у здоровых молодых людей при интенсивной физической работе в условиях высокой температуры окружающей среды.  Тепловой шок - коллапс (острое нарушение гемодинамики)

Солнечный удар. Может наблюдаться при интенсивной солнечной радиации в жаркую погоду. Обусловлен перегреванием непосредственно ЦНС

Тепловое истощение. Связано с потерей воды, солей, витаминов, белков.

Судорожная болезнь. Связана с тем, что с потом выводятся минеральные вещества — хлориды натрия и калия и возникают судороги..

Питьевая болезнь. Связана с компенсаторным увеличением потребления воды человеком (из-за обезвоживания). При этом могут возникать дисбактериоза, хронические диспепсии, энтероколиты, стойкая альбуминурия.

Нервные расстройства. Нервная система наиболее чувствительна к повышению температуры тела, поэтому перегревание может вести к ее функциональным нарушениям.

Билет № 6 Терморегуляция Уравнение ТБ Низкая температ.

Терморегуляция — это способность животных организмов поддерживать температуру тела в определённых границах, даже если температура внешней среды сильно отличается.

Общее воздействие микроклимата на тепловое состояние может быть выражено уравнением теплового баланса: Qмет ± Qконд ±Qрад ± Qконв  Qисп = 0

На действие низкой температуры организм вначале отвечает защитными реакциями, стараясь сохранить температуру тела. Максимально снижается теплоотдача: поверхностные сосуды сокращаются, кожа становится бледной. Увеличивается теплообразование: вследствие рефлекторного сокращения мышц человек начинает дрожать, усиливается обмен веществ в тканях. При продолжающемся действии холода компенсаторные возможности организма иссякают и температура тела снижается, что ведет к нарушению нормальной деятельности важнейших органов и систем, в первую очередь центральной нервной системы. Кровеносные сосуды кожи расширяются, она становится синюшной. Мышечная дрожь прекращается. Дыхание и пульс резко замедляются, артериальное давление падает. Наступает кислородное голодание тканей из-за снижения их способности поглощать кислород крови. Нервная система находится в состоянии угнетения, что ведет к почти полной потере чувствительности. При температуре тела около 31 °C человек теряет сознание. Иногда отмечаются судороги, непроизвольное мочеиспускание. При падении температуры тела до +25–23 °C обычно наступает смерть.

Билет № 7 Вентиляция Естественная

Вентиляция  представляет  собой  систему  технических  средств, обеспечивающую регулярный воздухообмен в помещении. Она предназначена для удаления из помещения избыточного микроклимата и ионного состава.

Естественная вентиляция может быть неорганизованной, когда воздух подается  в  помещение  и  удаляется  из  него  за  счет  инфильтрации  через неплотности  и  поры  наружных  ограждений. 

Естественная вентиляция позволяет подавать и удалять из помещений большие  объемы  воздуха  без  применения  вентиляторов.  Недостатком является зависимость ее эффективности от температуры наружного воздуха, силы и направления ветра.

Билет № 8 Вентиляция Искусственная

Вентиляция  представляет  собой  систему  технических  средств, обеспечивающую регулярный воздухообмен в помещении. Она предназначена для удаления из помещения избыточного микроклимата и ионного состава.

Искусственная  механическая  вентиляция,  осуществляемая  за  счет вентиляторов и эжекторов, позволяет в отличие от естественной вентиляции, подавать  воздух  в  любую  зону  помещения  или  удалять  его  из  мест образования  различных  вредностей:  пыли,  влаги,  тепла,  газов.  В  системах механической вентиляции можно предусматривать устройства для подогрева, увлажнения и очистки воздуха от пыли, а также его ионизацию. Механическая вентиляция может применяться как для подачи воздуха в помещение, тогда она  называется приточной, так и для удаления воздуха  из помещения, тогда она называется вытяжной.

Билет № 9 Освещение

Освещённость — световая величина, равная отношению светового потока, падающего на малый участок поверхности, к его площади

Естественный )свет по своему спектральному составу значительно отличается от света, получаемого от электрических источников света. В спектре солнечного света гораздо больше необходимых для человека ультрафиолетовых лучей; для естественного освещения характерна высокая рассеянность света, весьма благоприятная для зрительных условий работы.

Искусственное освещение делится на несколько разновидностей. Существует четыре вида искусственного освещения. Обычно три из них устанавливаются в жилых помещениях, четвертое встречается реже.

1. Общее.

При общем освещении происходит равномерное распределение света по всей площади. Это достигается соблюдением одинакового расстояния между светильниками, которые равномерно рассеянны.

При источнике света, локализованном в одной точке, будет наблюдаться разница в яркости света, но резкие перепады будут отсутствовать. Примером может послужить расположенная посередине потолка люстра.

2. Местное.

Местное освещение наоборот позволяет выделить только конкретный участок комнаты, который ярко освещается локализованным источником света.

3. Комбинированное.

Устранить все эти недостатки можно, совместив местный и общий свет вместе. Таким образом, будет решена проблема освещенности современного жилища. Именно поэтому, комбинированное освещение, которое совмещает в себе два предыдущих вида, наиболее часто применяемый вариант.

4. Аварийное.

Описанные выше виды освещения применяются в жилых помещениях. Четвертый вид освещения – аварийное. К сожалению, его не всегда можно встретить в жилых помещениях.

Аварийное освещение является необходимым в помещениях, где отключение света может стать причиной получения серьезных травм.

Монохроматическое излучение - излучение одной частоты.

Ультрафиолетовое излучение - оптическое излучение с длиной волны меньшей, чем у видимого излучения.Ультрафиолетовое излучение делится на три группы:

А( короткие волны) 315-400 нм

В (средние волны) 280-315 нм

С (длинные волны) 100-280 нм

Видимое излучение - электромагнитное излучение с длиной волны от 380 до 780 нм.

Инфракрасное излучение - электромагнитное излучение с длиной волны большей, чем у видимого излучения.Инфракрасное излучение делится на три группы:

А (короткие волны) 800-1400 нм

В (средние волны) 1400-3000 нм

С (длинные волны) 3000-10000 нм

Световая отдача - отношение излучаемого светового потока к потребляемой мощности. Единица измерения — люмен на ватт (лм/Вт).

Поток излучения - количество энергии, излучаемой за единицу времени. Единица измерения — ватт (Вт).

Световой поток - полное количество света, излучаемого данным источником в видимой области спектра. Единица — люмен (лм).

Сила света - пространственная плотность светового потока в заданном направлении, или отношение светового потока, направленного от источника в пределах телесного угла, охватывающего данное направление, к этому углу. Единица — кандела (кд).

Освещенность - плотность падающего светового потока на поверхности, или отношение светового потока, падающего на поверхность, к площади этой поверхности. Единица измерения — люкс (лк).

Яркость - отношение силы излучения в заданном направлении от участка поверхности к проекции излучающей поверхности на плоскость, перпендикулярную этому направлению. Единица измерения — кандела на метр квадратный (кд/м2).

Цветовая температура - температура черного тела, при которой оно испускает излучение с той же хроматичностью, что и рассматриваемое измерение. Эта мера объективного впечатления от цвета данного источника света. Единица измерения — кельвин (К).

2700К — сверхтеплый белый

3000К — теплый белый

4000К — естественный белый

5000К — холодный белый (дневной)

Индекс цветопередачи - отношение цветов предметов при освещении их данным источником света к цветам этих же предметов, освещаемых источником света, принятым за эталон (чаще всего — Солнцем).Символ: Ra

Ra 91-100 — очень хорошая цветопередача

Ra 81-91 — хорошая цветопередача

Ra 51-80 — средняя цветопередача

Ra < 51 - слабая цветопередача

Билет № 10 Светильник

Светильник — искусственный источник света, прибор, перераспределяющий свет лампы (ламп) внутри больших телесных углов и обеспечивающий угловую концентрацию светового потока. Основной задачей светильника является рассеивание и направление света для освещения зданий, их внутренних помещений, прилегающих к зданиям территорий, улиц и пр.

Световой поток представляет собой мощность светового излучения, воспринимаемого человеком как видимый свет. Обозначается буквой Ф и измеряется в люменах (лм). Световой поток обычно указывают в характеристиках ламп. Так для люминесцентной лампы мощностью 18 Вт световой поток может достигать 1350 лм, при мощности лампы 36 Вт – 3350 лм и при мощности лампы 58 Вт – 5200 лм.

Сила света представляет собой отношение направленного светового потока, распространяющегося внутри телесного угла, к величине этого телесного угла. Обозначается буквой I и имеет размерность кандела (кд).

 Световая отдача (энергоэффективность). Определяется как отношение светового потока, исходящего от светильника, к электрической мощности, потребляемой светильником от электросети. Измеряется в лм/Вт.   

 Освещенность. Это величина светового потока, приходящаяся на единицу площади освещаемой поверхности. Обозначается буквой Е, имеет размерность люкс (лк). 1лк=1лм/м2. В отличие от таких характеристик, как световой поток и световая отдача, которые являются характеристиками непосредственно источника света, параметр освещенности показывает, насколько правильно подобраны светильники для данного конкретного помещения. Достаточно освещено рабочее место или нет. При проектировании освещения рассчитывается именно освещенность, которая нормируется в зависимости от вида зрительных работ.

Яркость. Это отношение силы света в заданном направлении к площади проекции излучающей поверхности на плоскость, перпендикулярную данному направлению. Определяется как отношение кд/м2.

Светимость. Отношение светового потока к площади излучающей этот поток поверхности. Другими словами плотность светового потока на излучающей поверхности источника излучения, определяется как лм/м2.

Коэффициент пульсаций освещенности. Характеризует изменение освещенности, вызванное изменением мгновенного значения напряжения питающей сети.

Кс=100(Еmax-Emin)/Еср Показатели ослепленности. Характеризуют слепящее действие, создаваемое светильником

Осветительная арматура необходима для зашиты зрения от слепящего действия источников света. Применяется она также в целях защиты источников света от вредного воздействия атмосферы, паров и газов окружающей среды так же, как и окружающей среды от источников света.

Билет № 11 Достоинства и недостатки люминесцентных ламп

Люминесцентные лампы имеют такие преимущества по сравнению с лампами накаливания как:

 

Высокая световая отдача, более высокий коэффициент полезного действия (20-25%) и больший срок службы. По сравнению с лампами накаливания люминесцентные лампы при затрате той же мощности достигается значительно большая освещенность;

Правильный выбор ламп по цветности может создать болееестественное освещение;

Менее чувствительны к повышению напряжения. И поэтомуих экономично применять в помещениях и лестничных клетках освещаемых ночью, когда в сети повышено напряжение;

Приятное для восприятия спектры излучения, которые обеспечивают высокое качество цветопередачи;

Малая себестоимость;

Низкая температура (до 50 °С), низкая яркость поверхности.

Недостатки люминесцентных ламп по сравнению с лампами накаливания являются:

К концу срока службы лампы наблюдается снижение светового потока;

Единичная мощность ограниченна до 150 Вт;

Сложные схемы подключения;

При снижении напряжения в сети более, чем на 10 % от номинального значения, лампа не загорается;

Повышенная шумность работы лампы и акустические помехи;

Наличие радиопомех;

Вредные для зрения пульсации светового потока;

В лампах содержатся вредные для здоровья вещества, и поэтому вышедшие из строя лампы требуют тщательной утилизации;

При снижении температуры лампы могут гаснуть или не зажигаться (всё это зависит от температуры окружающей среды);

Билет № 12 Достоинства и недостатки ламп накаливания

Лампа накаливанияэто источник света, проходящий по спирали лампы и преобразующий энергию электрического тока в световую и тепловую энергию.

Достоинства:

Имеют небольшие размеры;

При включении загораются практически мгновенно;

Невысокая стоимость.

Недостатки:

Небольшой срок службы (около 1000 ч);

Яркость ламп отрицательно сказывается на зрении человека, поэтому требуется применения плафонов;

При повышении напряжения электросети срок службы ламп существенно снижается.

Основной недостаток ламп накаливания – низкая светоотдача, т.к. отношение мощности лучей видимого спектра к мощности потребляемой сети очень мал и не превышает 4%.

Билет № 13 Шум

Шум — беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Первоначально слово шум относилось исключительно к звуковым колебаниям, однако в современной науке оно было распространено и на другие виды колебаний (радио-, электричество).

Нормирование шума осуществляется по предельному спектру шума и уровню звукового давления. При первом методе предельно допустимые уровни звукового давления нормируются в октавных полосах частот со среднегеомегрическими частотами 31,5, 63, 125, 250, 500, 1000, 2000. 4000, 8000 Гц. Совокупность девяти допустимых уровней звукового давления называется предельным спектром.        Второй метод нормирования общего уровня шума, измеренного по шкале А шумомера и называемого уровнем звука в дБА, используется аля ориентировочной оценки постоянного и непостоянного шума, так как в этом случае спектр шума неизвестен.

Характеристики шума

Звуковое давление р определяет силовое воздействие звуковой волны (волны сжатия/расширения) в заданной точке пространства на мембрану уха или заменяющий ее микрофон. Это силовая характеристика выбранной точки звукового поля.

Интенсивность звука I характеризует перенос энергии при распространении звуковой волны, т. е. плотность потока звуковой мощности W.

Звуковая мощность W определяет энергию звуковой волны, проходящими в единицу времени через заданную поверхность.

Билет № 14 Шум действие на человека защита от шума

Шум оказывает губительное воздействие на здоровье человека. Шум приводит к снижению внимания и увеличению ошибок при выполнение различных видов работ. Шум замедляет реакцию человека на поступающие от технических устройств сигналы. Шум угнетает центральную нервную систему (ЦНС), вызывает изменения скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, язвы желудка, гипертонических болезни.

Уровень шума, способный вызвать потерю слуха, зависит от продолжительности воздействия.

Наиболее эффективным средством является борьба с шумом в источнике его возникновения. Для уменьшения механического шума необходимо своевременно проводить ремонт оборудования, заменять ударные процессы на безударные, шире использовать принудительное смазывание трущихся поверхностей, применять балансировку вращающихся частей. Снижения аэродинамического шума можно добиться уменьшением скорости газового потока, улучшением аэродинамики конструкции, звукоизоляции и установкой глушителей. Электромагнитные шумы снижают конструктивными изменениями в электрических машинах.

Широкое применение получили методы снижения шума на пути его распространения посредством установки звукоизолирующих и звукопоглощающих преград в виде экранов, перегородок, кожухов, кабин и др. Хорошие звукопоглощающие свойства имеют легкие и пористые материалы (минеральный войлок, стекловата, поролон и т.п.).

Билет № 15 Электробезопасность

Электробезопасность — система организационных мероприятий и технических средств, предотвращающих вредное и опасное воздействие на работающих от электрического тока и электрической дуги.

Электрическая безопасность включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия.

Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование.

Электротравматизм характеризуют такие особенности: защитная реакция организма появляется только после попадания человека под напряжение, т. е. когда электрический ток уже протекает через его организм; электрический ток действует не только в местах контактов с телом человека и на пути прохождения через организм, но и вызывает рефлекторное действие, проявляющееся в нарушении нормальной деятельности сердечно-сосудистой и нервной системы, дыхания и т. д. Электротравму человек может получить как при непосредственном контакте с токоведущими частями, так и при поражении напряжением прикосновения или шага, через электрическую дугу.

Электротравматизм по сравнению с другими видами производственного травматизма составляет небольшой процент, однако по числу травм с тяжелым, и особенно летальным, исходом занимает одно из первых мест. Наибольшее число электротравм (60—70 %) происходит при работе на электроустановках напряжением до 1000 В. Это объясняется широким распространением таких электроустановок и сравнительно низким уровнем электротехнической подготовки лиц, эксплуатирующих их. Электроустановок напряжением свыше 1000 В в эксплуатации значительно меньше, и обслуживает их специально обученный персонал, что и обусловливает меньшее количество электротравм.

Причины смерти от электрического тока

Фибрилляция сердца.

Причинами смерти от электрического тока могут быть прекращение дыхания, прекращение работы сердца и электрический шок. Возможно также одновременное действие всех трех причин.

2.1. Прекращение работы сердца — результат прямого воздействия тока на мышцу сердца, т.е. прохождение тока в области сердца или рефлекторно через центральную нервную систему, когда путь тока лежит вне этой области. В обоих случаях может произойти остановка сердца или наступить его фибрилляция.

Фибрилляция сердца — хаотические разновременные сокращения волокон сердечной мышцы (фибрилл), при которых сердце не в состоянии гнать кровь по сосудам.

2.2. Электрический шок своеобразная тяжелая нервно-рефлекторная реакция организма в ответ на чрезмерное раздражение электрическим током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить или гибель человека в результате полного угасания жизненно важных функций, или выздоровление как результат своевременного активного лечебного вмешательства.

Билет № 16 Виды поражения эл током и ЭБ

Электробезопасность — система организационных мероприятий и технических средств, предотвращающих вредное и опасное воздействие на работающих от электрического тока и электрической дуги.

Электрическая безопасность включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия.

Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование.

Различают два основных вида поражения человека электрическим током: электрические травмы и электрические удары.

Виды электротравм: местные электротравмы (электрический ожог, электрические знаки, металлизация кожи, механические повреждения, электроофтальмия).

Особую опасность представляют электрические травмы в виде ожогов. Электрический ожог появляется в месте контакта тела человека с токоведущей частью электроустановки или электрической дугой. Электроожоги излечиваются значительно труднее и медленнее обычных термических, сопровождаются внезапно возникающими кровотечениями, омертвением отдельных участков тела.

Металлизация кожи-проникновение в ее верхние слои мельчайших частичек металла, расплавившегося под действием электрической дуги. Пострадавший в месте поражения испытывает напряжение кожи от присутствия в ней инородного тела и боль от ожога за счет раскаленного металла. Металлизация наблюдается примерно у 10 % пострадавших.

Механические повреждения возникают в результате резких, судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов, нервной ткани, а также вывихи суставов и переломы костей.

Электроофтальмия — воспаление наружных оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей, которые поглощаются клетками и вызывают в них химические изменения. Такое облучение возможно при наличии электрической дуги.

Электрические знаки представляют собой четко очерченные пятна серого или бледножелтого цвета круглой или овальной формы с углублением в центре, иногда в виде царапин, ушибов, бородавок, кровоизлияний в коже, мозолей, иногда напоминают форму молнии. В основном электрические знаки безболезненны. Знаки возникают у 20% пострадавших от тока.

Билет № 17 Классификация помещений по ЭБ

Помещения с электроустановками - это такие помещения или отгороженные части помещения, в которых установлено эксплуатируемое электрооборудование и которые доступны только для личного состава, имеющего необходимую квалификацию и допуск для обслуживания электроустановок.

Сухими помещениями называют помещения, в которых относительная влажность воздуха не превышает 60%.

Влажными помещениями называют помещения, в которых пары и конденсирующая влага выделяются лишь кратковременно в небольших количествах, а относительная влажность воздуха более 60%, но не превышает 75%.

Сырыми помещениями называют помещения, в которых относительная влажность воздуха длительно превышает 75%.

Особо сырыми помещениями называют помещения, в которых относительная влажность воздуха близка к 100% (потолки, стены, пол и предметы, находящиеся в помещении, покрыты влагой).



Страницы: Первая | 1 | 2 | 3 | Вперед → | Последняя | Весь текст


Предыдущий:

Следующий: