билет №7 История и методология науки

История и методология науки.

1. Парадигмальный характер развития науки. Понятие парадигмы.

Парадигма (от греч. παράδειγμα, «пример, модель, образец») — термин был введен Ф. де Соссюром, который обозначал им систему форм одного и того же слова, как бы свод таблиц склонения и спряжений. Парадигму так же можно назвать научной картиной мира.

На основе этого термина возник новый — «парадигма научного знания», который появился в трудах американского ученого Томаса Куна в его известной книге «Структура научных революций». Т. Кун писал: «Под парадигмой я подразумеваю признанные всеми научные достижения, которые в течение определенного времени дают научному сообществу модель постановки проблем и их решений». Для любой науки нужны объект и предмет исследования, методы анализа явлений.

В современном языкознании термин «парадигма» получил широкое распространение. Современная лингвистика понимает парадигму научного знания как господствующую на каждом этапе истории лингвистических учений систему воззрений на язык, которая определяет предмет и принцы лингвистического исследования в соответствии с культурно-историческим и философским контекстом эпохи. Таким образом, научная парадигма — это совокупность научных представлений, теоретических установок, научных достижений, которые дают исследователю модель постановки проблем и их решений.

На сегодняшний день в современной лингвистике нет однозначного подхода к выделению парадигм, смена которых и составляет историю языкознания. Исследователи определяют различное количество научных парадигм на протяжении развития лингвистик.

Смена парадигм происходит, когда специалист не может больше избежать аномалий, разрушающих существующую традицию научной практики, – начинаются нетрадиционные исследования, которые в конце концов приводят всю данную отрасль науки к новой системе предписаний, к новому базису для практики научных исследований. Исключительные ситуации, в которых возникает эта смена профессиональных предписаний, рассматриваются как научные революции. Они являются дополнениями к связанной традициями деятельности в период нормальной науки, которые разрушают традиции.

Наиболее очевидные примеры научных революций представляют собой те знаменитые эпизоды в развитии науки, за которыми уже давно закрепилось название революций. Великие поворотные пункты в развитии науки связаны с именами Коперника, Ньютона, Лавуазье и Эйнштейна. Лучше всех других достижений, по крайней мере в истории физики, эти поворотные моменты служат образцами научных революций. Каждое из этих открытий необходимо обусловливало отказ научного сообщества от той или иной освященной веками научной теории в пользу другой теории, несовместимой с прежней. Каждое из них вызывало последующий сдвиг в проблемах, подлежащих тщательному научному исследованию, и в тех стандартах, с помощью которых профессиональный ученый определял, можно ли считать правомерной ту или иную проблему или закономерным то или иное ее решение. И каждое из этих открытий преобразовывало научное воображение таким образом, что мы в конечном счете должны признать это трансформацией мира, в котором проводится научная работа. Такие изменения вместе с дискуссиями, неизменно сопровождающими их, и определяют основные характерные черты научных революций.

Эти характерные черты с особой четкостью вырисовываются из изучения, скажем, революции, совершенной Ньютоном, или революции в химии. Однако те же черты можно найти при изучении других эпизодов в развитии науки, которые не имеют столь явно выраженного революционного значения. Для гораздо более узких профессиональных групп, научные интересы которых затронуло, скажем, создание электромагнитной теории, уравнения Максвелла были не менее революционны, чем теория Эйнштейна, и сопротивление их принятию было ничуть не слабее. Создание других новых теорий по понятным причинам вызывает такую же реакцию со стороны тех специалистов, чью область компетенции они затрагивают. Для этих специалистов новая теория предполагает изменение в правилах, которыми руководствовались ученые в практике нормальной науки до этого времени. Следовательно, новая теория неизбежно отражается на широком фронте научной работы, которую эти специалисты уже успешно завершили. Вот почему она, какой бы специальной ни была область ее приложения, никогда не представляет собой (или, во всяком случае, очень редко представляет) просто приращение к тому, что уже было известно. Усвоение новой теории требует перестройки прежней и переоценки прежних фактов, внутреннего революционного процесса, который редко оказывается под силу одному ученому и никогда не совершается в один день. Нет поэтому ничего удивительного в том, что историкам науки бывает весьма затруднительно определить точно дату этого длительного процесса, хотя сама их терминология принуждает видеть в нем некоторое изолированное событие.

Кроме того, создание новых теорий не является единственной категорией событий в науке, вдохновляющих специалистов на революционные преобразования в областях, в которых эти теории возникают. Предписания, управляющие нормальной наукой, определяют не только те виды сущностей, которые включает в себя универсум, но, неявным образом, и то, чего в нем нет. Отсюда следует (хотя эта точка зрения требует более широкого обсуждения), что открытия, подобные открытию кислорода или рентгеновских лучей, не просто добавляют еще какое-то количество знания в мир ученых. В конечном счете это действительно происходит, но не раньше, чем сообщество ученых-профессионалов сделает переоценку значения традиционных экспериментальных процедур, изменит свое понятие о сущностях, с которым оно давно сроднилось, и в процессе этой перестройки внесет видоизменения и в теоретическую схему, сквозь которую оно воспринимает мир. Научный факт и теория в действительности не разделяются друг от друга непроницаемой стеной, хотя подобное разделение и можно встретить в традиционной практике нормальной науки. Вот почему непредвиденные открытия не представляют собой просто введения новых фактов. По этой же причине фундаментально новые факты или теории качественно преобразуют мир ученого в той же мере, в какой количественно обогащают его.

Истоки возникновения механистической картины мира относятся к античному периоду. Именно в это время появились первые наивно-механистические представления об окружающем мире.

Картина мира, соответствующая натурфилософской парадигме, возникла в античной Греции. Первая концепция Вселенной, доступная интеллектуалу, принадлежит Пифагору.

Следующим этапом преодоления некритических догм классики явилось создание квантовой механики. Такой поворот в пласте духовности был подготовлен глубокими идейными процессами на рубеже XIX — первой четверти XX в. Новые признаки революционных изменений в физике были связаны в первую очередь с парадоксами, обнаруженными как в сфере применения молекулярно-кинетической парадигмы, так и в сфере применения парадигмы электромагнитного поля. Кроме того, был сделан ряд новых принципиальных открытий (рентгеновских лучей, радиоактивности, электрона и др.), которые вызвали переворот в научных взглядах физиков. Эти открытия явно не укладывались в рамки классических представлений, и для их объяснения потребовалось принципиальное изменение базисных парадигм — фундаментальных представлений физической картины мира. И первым шагом к такому изменению явилось введение гипотезы конечного кванта действия (Макс Планк), согласно которой энергия электромагнитных волн принимает не любые непрерывные значения, а дискретные порции энергии. Гипотеза квантов принципиально изменила подход к изучению явлений природы. Такой подход был сначала успешно применен Эйнштейном для объяснения оптических явлений, в частности фотоэффекта (дуализм свойств света). В дальнейшем гипотеза квантов получила подтверждение во многих экспериментах и стала доминирующей в изучении законов микромира.

2. Неклассическая наука.

Неклассическая наука — концепция в советской и российской школе философии науки, введённая В. С. Стёпиным, выделяющая особый тип науки эпохи кризиса классической рациональности (конец ХIХ — 60-е годы XX в.). Неклассическая наука включает в себя ряд следующих концепций: теория эволюции Дарвина, теория относительности Эйнштейна, принцип неопределенности Гейзенберга, гипотеза Большого Взрыва, теория катастроф Рене Тома, фрактальная геометрия Мандельброта.

В конце ХIХ — начале XX в. последовал ряд открытий, которые не вписывались в существовавшую научную картину мира. Были получены новые экспериментальные данные, которые привели к созданию революционных научных теорий такими учёными, как М. Планк, Э. Резерфорд, Нильс Бор, Луи де Бройль, В. Паули, Э. Шредингер, В. Гейзенберг, А. Эйнштейн, П. Дирак, А. А. Фридман и др.

Переход от классической науки к неклассической заключался во вхождении субъекта познания в «тело» знания в качестве его необходимого компонента. Изменилось понимание предмета науки: им стала теперь не реальность «в чистом виде», а некоторый её срез, заданный через призму принятых теоретических и операционных средств и способов её освоения субъектом. Внимание стало уделяться не предмету, а методу исследования.

Установление относительности объекта к научно-исследовательской деятельности привело к тому, что наука стала изучать не неизменные вещи, а вещи в конкретных условиях их существования. Поскольку исследователь фиксирует только конкретные результаты взаимодействия изучаемого объекта с прибором, возникает некоторый «разброс» в конечных результатах исследования. Из этого вытекает правомерность и равноправность различных видов научного описания объекта в различных условиях (ср. Корпускулярно-волновой дуализм), создания его теоретических конструктов (понятие в философии, производимый сознанием идеальный объект).

Если в классической науке картина мира должна быть картиной изучаемого объекта самого по себе, то неклассический научный способ описания с необходимостью включает в себя, помимо изучаемых объектов, используемые для их изучения приборы, а также сам акт измерения. В соответствии с этим подходом Вселенная рассматривается как сеть взаимосвязанных событий, подчёркивая активную роль и вовлечённость субъекта познания в сам процесс получения знаний. Любое свойство того или иного участка этой сети не имеет абсолютного характера, а зависит от свойств остальных участков сети.

Наука этого периода столкнулась с миром сложных саморегулирующихся систем (теория эволюции) и начала осваивать его. Картины мира различных наук в это время пока ещё отделены друг от друга, но они все совместно формируют общенаучную картину мира, отсутствовавшую как единое целое в классической науке. Эта картина перестаёт считаться вечной и неизменной истиной и осознаётся как последовательно развиваемое и уточняемое относительно верное знание о мире.

В неклассической науке наметилась тенденция на сближение естественных и гуманитарных направлений, что стало характерной чертой следующего — постнеклассического — этапа развития науки.

Предпосылками к созданию квантово-релятивистской картины мира были: открытие фотоэффекта, радиоактивности и микромира (мир элементарных частиц). Фотоэффект-испускание веществом электронов под действием электромагнитного излучения (в 1887г. обнаружен Герцем). С точки зрения Максвелла это явление объяснить не удалось, т.к. по его теории электрон должен накопить энергию выхода (иначе потратить на это время), опыт же показал, что этого не происходит. Стало ясно, что необходимы другие теории. Макс Планк предложил квантовую гипотезу-свет излучается не непрерывно, а порциями (квантами). На основе этой гипотезы Эйнштейн создал квантовую теорию света. Свет это поток квантов, фотонов, с помощью чего был объяснен фотоэффект. Фотон испускается и поглощается как целое, электрон заимствует энергию фотона, поэтому фотоэффект происходит мгновенно. В конце XIXв., благодаря счастливой случайности, произошло открытие радиоактивности — явления, доказывающего сложный состав атомного ядра. Вспомним, что рентгеновские лучи впервые были получены при столкновениях быстрых электронов со стеклянной стенкой разрядной трубки. Одновременно наблюдалось свечение стенок трубки. Беккерель долгое время исследовал родственное явление — свечение веществ, предварительно облученных солнечным светом. К таким веществам принадлежат, в частности, соли урана, с которыми экспериментировал Беккерель. И вот у него возник вопрос: не появляются ли после облучения солей урана наряду с видимым светом и рентгеновские лучи? Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления пластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое-то излучение, которое, подобно рентгеновскому, пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896 г., провести очередной опыт ему не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без влияния внешних факторов создают какое-то излучение. Начались интенсивные исследования. После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри, этим занялся Резерфорд. Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещался на дно узкого канала в куске свинца. Против канала помещалась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, перпендикулярное к лучу. Вся установка размещалась в вакууме. В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно, точно против канала. В магнитном поле пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем, гораздо больше, чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный — бета-лучей и нейтральный — гамма-лучей. Эти три вида излучения очень сильно отличаются друг от друга по проникающей способности, т.е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают альфа-лучи. Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего альфа-излучению. Гораздо меньше поглощаются при прохождении через вещество бета-лучи. Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают гамма-лучи. По своим свойствам гамма-лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводит на мысль, что гамма-лучи представляют собой электромагнитные волны. С самого начала альфа- и бета-лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать с бета-лучам. И, так как они сильно отклоняются как в магнитном, так и в электрическом поле. При исследовании отклонения бета-частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Труднее оказалось выяснить природу альфа-частиц, так как они слабо отклоняются магнитным и электрическим полями. Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в магнитном поле. Оно оказалось примерно в два раза меньше, чем у протона — ядра атома водорода. Заряд протона равен элементарному, а его масса очень близка к атомной единице массы. Следовательно, у альфа-частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы. Следовательно, на два элементарных заряда приходится четыре атомных единицы массы. Такой же заряд и такую же относительную атомную массу имеет ядро гелия. Из этого следует, что альфа-частица — это ядро атома гелия (или соответственно его времени-ион атома гелия).Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном альфа-распаде образуется гелий. Собирая альфа-частицы внутри специального резервуара на протяжении нескольких дней, Резерфорд с помощью спектрального анализа убедился в том, что в сосуде накапливается гелий (каждая альфа-частица захватывала два электрона и превращалась в атом гелия).

Трансцендентальная философия, или трансцендентализм — это

1) теоретико-познавательная позиция,

2) американское литературно-философское движение середины XIX века,

3) широкое историко-философское направление, ставящее в центре внимания понятие трансцендентального и отчасти трансцендентного, занимающееся выяснением условий и границ нашего познания, условием объективности и интерсубъективности знания и познания, имеющее тесную связь с онтологией (наукой о бытии) и метафизикой (раздел философии, занимающийся исследованиями первоначальной природы реальности, мира и бытия как такового). Трансцендентальная философия есть трансцендентализм в узком смысле слова, то есть трансцендентализм осуществленный на уровне его основных идей целостно и систематически. Наиболее важным для трансцендентальной философии является проблема интерпретации того, что есть опыт, что есть доопытное, или априорное, знание, проблема соотношения трансцендентного и трансцендентального.

Предыдущий:

Следующий: